
Requirements Specifications and Scenarios:
Two Design Artefacts in Software Engineering

Morten Hertzum
Centre for Human-Machine Interaction

Risø National Laboratory
DK-4000 Roskilde, Denmark

+45 4677 5145

morten.hertzum@risoe.dk

1. INTRODUCTION
Requirements specifications are an established element of
software-engineering projects, and scenarios have gained
acceptance in both research and practice as a way of grounding
projects in the users’ work. However, the research on
requirements specifications and scenario-based design includes
very few studies of how such design artefacts are actually used by
practising software engineers in real-world projects. This study [3,
4] investigates how a requirements specification and a set of
scenarios entered into defining how software engineers and users
envisioned the future interaction between tasks, users, and the
system under development.

The company where the study took place is a large software
house, which has developed and marketed a range of systems for
use in municipal institutions. The studied project concerns a
system to support municipal authorities in the handling of cases
concerning child support and alimony (CSA). The CSA project is
to completely redevelop the company’s existing CSA system,
which has been in operation for almost two decades. The CSA
project is staffed with 17 people with an average of more than ten
years of professional experience, and the project will, according to
the project plan, last three years.

The data collected for this study cover the first year of the project
and comprise attendance at the two-day start-up seminar,
observation of the fortnightly project status meetings, interviews
with core project participants, and inspection of project
documentation. The meetings and interviews were recorded on
tape and transcribed. The documents, which provide evidence of
the evolution and intermediate outcomes of the project, include
among other things the final as well as several preliminary versions
of the requirements specification and the scenarios.

2. REQUIREMENTS SPECIFICATION
The requirements specification consisted of 221 requirements,
which were maintained as individual entries and organised by
means of a classification scheme. The initial purpose of the
requirements specification was to facilitate communication with
the user representatives during the requirements-engineering
process. After its completion the requirements specification
assumed a double role of, on the one hand, contract between users
and development organisation and, on the other hand, checklist for

the CSA engineers during the development and evaluation of
subsequent design artefacts. In these roles, the requirements
specification and its classification scheme had a primarily indirect
effect on the design process. For example, the scenarios were not
generated from the requirements specification. Rather, they were
developed on the basis of the CSA engineers’ knowledge of the
domain and the users’ tasks, supplemented by discussions with
the user representatives and some reading of CSA legislation. The
requirements specification was used most visibly when it was
brought in at selected points in the process, for example to validate
that design artefacts such as the scenarios met the full range of
requirements. However, the requirements specification also
affected the design process in another, more fundamental way as a
constituent part of the assumptions about the scope of the
project.

The requirements specification for the new CSA system inherited
a lot of its structure from the existing CSA system. This
introduced a potentially undue bias toward preserving existing
system facilities and ways of working. The CSA engineers were
aware of this risk but explicitly argued that it was more important
that the requirements classification depicted the world in a way
recognisable to the user representatives. While this is convenient,
it also illustrates how the requirements classification indirectly
constrained the requirements-engineering process to requirements
that could be conceived of within the framework of the existing
system [see also 1]. This is apparently at odds with the activities
undertaken to facilitate the user representatives in an open-ended
search for the optimal balance between tradition and transcendence
(e.g., a vision workshop conducted as part of one of the meetings).
The CSA engineers were, however, faced with two contradictory
concerns. On the one hand, they needed to conduct the
requirements-engineering process in a way that honoured
expectations of adequate user involvement. On the other hand,
they needed to maintain some level of control over the direction,
scope, and outcome of the requirements-engineering process,
which concluded in a specification of what the customers had
requested and the developers agreed to deliver – a contract. The
requirements classification played a discrete but important role in
the CSA engineers’ handling of these two concerns in that it
enabled the CSA engineers to act in accord with expectations of
adequate user involvement while at the same time constraining the
process. On several occasions, the CSA engineers explicitly asked

In E. Frøkjær and K. Hornbæk (eds.), Proceedings of the Second Danish Human-Computer Interaction Research Symposium
(Copenhagen, November 7, 2002), pp 26-27. DIKU Report 2002/19. University of Copenhagen, Copenhagen, Denmark.

the user representatives for new ideas and visions regarding the
system but, at the same time, the meetings with the user
representatives evolved around a walkthrough of the classified
requirements, one category at a time. Under these circumstances,
the user representatives had few ideas for new facilities that would
enhance the system.

The tension between open-ended user involvement and the
contractual aspect of requirements specification was rooted deeply
in the CSA engineers’ perception of their work, and they
considered disregard of this tension tantamount to being
unprofessional. This was, for example, a problem in their relations
with a usability specialist who considered it her role to
systematically “adopt the users’ perspective”. To the CSA
engineers handling these conflicting interests was normal, natural
practice [2] to the extent that they probably remained largely
unaware of how effective the requirements classification was as a
means of controlling the scope of their project.

3. SCENARIOS
The scenarios were schematised descriptions of the courses of
activities that constitute CSA work. The grounding in the flow of
CSA work means that the scenarios are rich in the information
needed in the day-to-day management of CSA cases, such as how
activities are sequenced, what triggers them, and when they trigger
other activities. This means that the scenarios make the users’
work recognisable to the CSA engineers as a complex but organised
human activity.

Each scenario consists of a chronological progression of activities.
Typically, CSA work progresses continually for only brief
intervals of time; then further progress must, for example, await
that the person entitled to receive CSA supplies additional
information. Consequently, most of the steps in the scenarios are
triggered by events. These events define the information that must
be provided before further progress can be made or they lead to
the execution of subtasks that are only relevant when certain
conditions occur. Consequently, the scenarios preserve the real-
world ordering of the activities involved in performing a task and
also delineate the events or circumstances that affect whether and
when various activities are performed. The CSA engineers
perceived the scenarios as quite coherent descriptions of CSA
tasks and considered this a valuable and distinguishing feature of
the scenarios.

When the scenarios were discontinued to free key CSA engineers
for other project activities several of the CSA engineers were
concerned that the discontinuation of the scenarios would deprive
them of valuable information about the various aspects of CSA
work. This concern was partly an appreciation of the scenarios
and partly instigated by the common impression among the CSA
engineers that the other design artefacts did not provide them with
an equally good tool for understanding CSA work. What the CSA
engineers lost with the scenarios was a design artefact that aimed
at describing the users’ work as tasks consisting of a structured
sequence of interrelated activities. Contrary to the scenarios, the
requirements specification can best be characterised as an extensive

list enumerating large amounts of separate details. The
requirements specification provides no information about how the
221 requirements impact on each other. It is, for example, left
entirely to the reader of the requirements specification to
determine whether it contains conflicting requirements.

The scenarios were developed as a tool for the stakeholders
internal to the CSA project. The descriptive nature of the
scenarios made them accessible to all CSA engineers and meant
that the scenarios were not biased toward, or owned by, a
subgroup of CSA engineers responsible for a specific part of the
project. Further, all CSA engineers considered it natural to relate
their work to the users’ tasks, which were the common referent of
the scenarios. This can be illustrated by some of the uses to which
the scenarios were put. The scenarios generated a number of the
events and elementary processes, which made up the business
model, and they were a defining input in the development of the
dialogue flow of the user-interface prototype. In addition, the CSA
engineers preferred the scenarios as their base representation in a
joined effort to establish the status of their project after six
months had elapsed.

Johnson-Laird and Wason [5] have vividly illustrated people’s
superiority in dealing with concrete descriptions of real-world
affairs, as opposed to abstract descriptions. Whereas abstract
descriptions tend to be experienced as logical puzzles, concrete
descriptions of real-world affairs seem to tie in with people’s
general abilities to deal with their world and to be experienced as
much more straightforward. Thus, the coherence and concrete,
real-world feel of the scenarios may be distinct advantages, which
made the CSA engineers better able to grasp CSA work and reason
about the suitability of different design ideas.

4. CONCLUSION
It is inherently difficult for people to transcend their current way
of perceiving things and envision how tasks, users, and technology
should interact in constituting the future use situation. Design
artefacts, such as requirements specifications and scenarios, may
affect this complex process in very different ways and, thus, play
different roles in software-engineering projects.

5. ACKNOWLEDGEMENTS
This work has been supported by the Danish National Research
Foundation through its funding of the Centre for Human-Machine
Interaction. Special thanks are due to the members of the CSA
project group who have put up with my presence in spite of their
busy schedule.

6. REFERENCES
[1] Bowker, G.C. & Star, S.L. (1999). Sorting Things Out:

Classification and Its Consequences. Cambridge, MA: MIT
Press.

[2] Garfinkel, H. (1967). “Good” organizational reasons for
“bad” clinic records. In H. Garfinkel, Studies in

Ethnomethodology, pp. 186-207. Englewood Cliffs, NJ:
Prentice Hall.

[3] Hertzum, M. (2002). Making use of scenarios: A field study
of conceptual design. Submitted for publication.

[4] Hertzum, M. (2002). Small-scale classification schemes: A
field study of requirements engineering. Submitted for
publication.

[5] Johnson-Laird, P.N. & Wason, P.C. (1977). A theoretical
analysis of insight into a reasoning task. In P.N. Johnson-
Laird & P.C. Wason (eds.), Thinking: Readings in Cognitive
Science, pp. 143-157. Cambridge, UK: Cambridge University
Press.

