
In M. Khosrowpour (ed.), Proceedings of the 5th International Conference of the Information Resources Management
Association (San Antonio, TX, May 22-25, 1994), pp. 448-455. Idea Group Publishing, Harrisburg.

Preprint version

1

A Comparison of Three Data Models for Text Storage and
Retrieval Systems: The Relational Model Revisited

Morten Hertzum

Dept. of Computer Science, University of Copenhagen

A number of software toolkits exist for the development of text storage and
retrieval systems (TSARS). This study compares three data models applicable to
such toolkits and discusses the suitability of one of them as the basis of a toolkit
unifying all three data models. The three data models are: (1) the text model, also
known as the inverted file approach, (2) the hypertext model, and (3) the relational
model. In the design of the relational model changeability was a key consideration,
but more often it is sacrificed to save development resources or improve
performance. As it is not uncommon to see successful TSARS exist for 15-20
years and be subject to manifold changes during their lifetime, it is the relational
model which is considered for use in the unified toolkit. It seems as if the relational
model can be enhanced to incorporate the text model and the hypertext model.

1. Introduction
Text storage and retrieval systems (TSARS) are systems intended to support the organization of
and access to bodies of texts. To avoid developing TSARS from scratch, they are mostly based on
a more or less application-specific toolkit, i.e. a set of integrated software tools covering large or all
parts of an application. The purpose of this study is twofold: (1) To review the strengths and
weaknesses of three data models applicable to such toolkits, namely the text model which is also
known as the inverted file approach, the hypertext model, and the relational model. (2) To discuss
the suitability of the relational model as the basis of a toolkit unifying all three data models. In the
literature, the relational model is generally considered inferior to other data models for the
development of TSARS (van Rijsbergen, 1979; Lynch & Stonebraker, 1988). From the present
author’s point of view this reflects an underestimation of the need for adapting TSARS to changes
during their lifetime.
 In the next section the three data models are introduced and their main properties as well as
major aspects of their implementations are discussed, based on the literature. Section 3 briefly
describes three commercially available toolkits implementing the data models and, to some extent,
combining facilities from them. Section 4 concerns the possibility of developing a toolkit having the
major strengths of all three data models. The choice of the relational model as the basis of this
toolkit implies that it is expected to be suited for this purpose; it does not imply that the two other
data models are judged unsuited.

2. The three data models
TSARS share a number of properties, but there are also fundamental differences which have
motivated the development and use of different data models. A couple of the differences are
highlighted in the following simple classification which distinguishes two types of systems and three
types of text involvement, see figure 2.1 which also includes examples. The two types of systems

2

are: (1) Text retrieval systems, which provide access to fixed or externally updated corpora. (2)
Text filing and retrieval systems, which provide facilities for both filing and, subsequently,
retrieving texts. The three types of text involvement are: (1) Registering, in which the system
handles fields with information about the texts, sometimes known as text surrogates, but not the text
itself. (2) Storing, in which the system handles the text itself along with certain attribute fields.
However, each text is treated as an atomic entity. (3) Modelling, in which the system handles
information about the internal structure of the texts along with the text itself and certain attribute
fields. Here, the retrieval facilities allow exploitation of the text structure, for example by providing
access both to entire texts at a time and to individual parts while retaining their relation to the entire
text.

type of text involvement

registering

keyword-based information
retrieval systems

journalization systems

storing

full-text information
retrieval systems

archival systems

modelling

hypertext 'books'

electronic publishing

type of system

text retrieval systems

text filing and retrieval
systems

Figure 2.1. A simple classification of TSARS, including examples.

2.1 The text model
The majority of text retrieval systems with little or no modelling of the texts are based on what
Macleod (1991) terms the text model. The text model is little more than a generalized description of
the way in which these systems are currently implemented and have been implemented for years
without major modifications. Texts are conceived of as independent documents with two major
components, a set of attributes and a content. The attributes vary with the application area, but
bibliographic information, such as title, author, and date of publication, is almost always present.
The contents is the text from which the document is composed and may or may not be included in
actual systems. To improve performance an index is established containing all the words appearing
in the attributes and, if part of the system, in the contents. This index is commonly implemented as
an inverted file, hence the designation the inverted file approach (Salton & McGill, 1983; Macleod,
1991).
 The major strength of the text model is that it is developed specifically for text storage and
retrieval (van Rijsbergen, 1979). The text model allows a reasonable natural representation of the
documents, including the possibility to subdivide documents into a sequence of paragraphs.
Retrieval can be conditioned on the contents of particular paragraphs and document display can be
restricted to specific paragraphs. The Boolean logic query language is syntactically simple, and in
combination with the index it provides fast performance even on very large text databases.
However, it is well-known that many users fail to understand the semantics of Boolean retrieval
and, thus, experience manifold difficulties in dealing with the query language, see e.g. (Borgman,
1986). Furthermore, the text model is easy to implement and most systems include text related
facilities, such as data entry tools, automatic creation of the index, and query constructs for phrase
handling and proximity searching.
 The major weaknesses of the text model are the crude, slow update facilities and the lack
of flexibility and extensibility. As argued by Hertzum et al. (1993), one reason for this is that the
traditional applications of the text model are text retrieval systems, not text filing and retrieval

3

systems. This issues in the assumption that the demands on the systems are rather stable and that
updates are sufficiently rare to be collected over a period of time and then executed collectively.
Some systems have these characteristics, others do not, and still others evolve from having to not
having them. With the current emphasis on interactivity and integrated information handling
environments the size of the last two categories is likely to be considerable and increasing. The lack
of flexibility is also evidenced by most implementations allowing only one document format per
application.
 A further weakness of the text model is the limited possibilities of modelling inter- and intra-
document structure and the exclusive provision of querying as the way to access the documents.
This separates the text model fundamentally from the hypertext model.

2.2 The hypertext model
The hypertext model was first described by Bush (1945), Engelbart (1963), and Nelson (1967) in
their attempts to devise the ultimate way of interaction between humans and TSARS. With its
emphasis on non-linear reading and text organization the hypertext model has evolved around an
idea of associative structuring. The characteristic feature of hypertext systems is that the text
database is a network of interlinked text chunks. However, contemporary hypertext systems vary
considerably in their definitions of the network concept. Recently, the Dexter hypertext reference
model (Halasz & Schwartz, 1990) has been proposed in an effort to standardize the terminology
and provide a basis for comparing hypertext systems.
 The major strengths of the hypertext model are the straightforward representation of texts,
the flexible, powerful linking facilities, and the interactive annotation and extension facilities. The
emphasis on human-computer interaction has equipped most systems with graphical user interfaces
manipulated by mouse-clicking on buttons embedded in the texts and elsewhere on the screen
(Conklin, 1987). Typically, hypertext systems support text as well as graphics; thus, figures and the
like found in many printed texts are not lost when the text is turned into hypertext. Furthermore,
some systems support hypermedia. The hypertext model emphasizes interactivity. This is apparent
in the facilities allowing new links and text chunks to be created. However, it is even more apparent
in the facilities providing access to the texts. The way to access the texts is browsing, i.e. exploring
text chunks and following links between them. To help the users stay oriented while browsing, the
links are often supplemented by a visual representation of the network, such as a map or tree.
 The major weaknesses of the hypertext model are inadequate query facilities, crude update
facilities, and the closedness of most hypertext systems. Browsing is an exploratory search strategy
well-suited in situations where understanding is given priority to retrieval (Marchionini &
Shneiderman, 1988). The hypertext model practically lacks query facilities to support the situations
in which retrieval is the major objective, for instance because the subject is understood but a certain
fact forgotten. Usually, the update facilities affect a single link or text chunk at a time and are
unsuited for making significant restructurings or global changes. Part of the explanation for the
humble query and update facilities is that higher level facilities require the imposition of some
structure on the network—and structure is contrary to the ideal of freedom permeating hypertext
work (Parsaye et al., 1989). Most hypertext systems are closed systems where texts must be
copied into the system before links can be attached to them (Puttress & Guimaraes, 1990). A few
systems provide a link service instead and thereby make it possible to create links, for instance, to
texts which are currently under preparation in a text processing system.

2.3 The relational model
The relational model was introduced by Codd in 1970 (Codd, 1970). During the 1980s systems
implementing it have become dominant for all database applications, except those involving large

4

amounts of text. However, as TSARS in which the texts are merely registered are rather similar to
traditional applications of the relational model, such systems are sometimes relational. In the
relational model data is arranged as rows (tuples) in 2-dimensional tables (relations), each tuple
consisting of a number of attributes. The relational model has succeeded in providing systems
developers with a more declarative, set-at-a-time programming language which leaves the
translation into a record-at-a-time access path to the database management systems (DBMS). The
goal was to take care of the file handling details of a broad range of applications, not to support all
aspects of a certain class of applications (Codd, 1982).
 The major strengths of the relational model are its simplicity, flexibility, extensibility, and the
powerful data manipulation facilities. The data manipulation facilities, commonly SQL, include a
query language as well as update facilities, both of which operating on sets. Links are modelled
easily and may reference texts as well as any other object. In the design of the relational model
change was considered an essential and unavoidable property of information systems (Codd,
1982). Thus, new relations and new attributes can be added in a piecemeal fashion without
affecting existing applications. It is also possible to experiment with the effects of having or not
having particular indexes on the relations without affecting the applications in any other way than in
performance. Furthermore, relational DBMS include numerous facilities for managing databases,
such as recovery routines, performance measuring facilities, and authorization mechanisms; Blair
(1988) lists many more such facilities.
 The major weaknesses of the relational model are difficulties modelling text with relations,
problems achieving satisfactory performance, and the efforts required to build the user interface on
top of the relational DBMS. Some TSARS reference the texts at several levels, for example at
document level, chapter level, and paragraph level. This makes retrieval from a relational database
somewhat cumbersome as relations must be normalized, i.e. all attributes must be atomic. Thus, the
texts must be divided into paragraphs to allow retrieval of individual paragraphs, and then a
document or chapter can only be retrieved as a sequence of paragraphs, not as one unbroken
entity. Preferably, it should be possible to access the texts at different levels of detail depending on
the situation. Normalized relations may be normalized further to reduce redundancy, a process
dividing the database into a larger number of relations. Having divided the database into a large
number of relations, it is typically necessary to combine—join—data from several relations to
answer a query. Thus, a lot of joins are required, and each join is a time-consuming operation
(Lynch & Stonebraker, 1988). Date (1986b) admits that there is some truth in regarding
normalization as optimizing for update at the expense of retrieval. Furthermore, a decade ago
relational DBMS lacked data structures for storing long texts (Codd, 1982); now this problem has
been significantly reduced, e.g. Sybase can handle up to 2 Gb of text as a single attribute.
 Many critics of basing TSARS on the relational model have focused on the unsuitability of
SQL as a query language for the end-user, see for example Morissey et al. (1986) and Macleod
(1991). From the present author’s point of view, SQL was never intended for this purpose, but as
the internal interface between the database and the application program. Because of its generality
SQL is much more complicated than the query language of virtually all TSARS need to be.
Furthermore, equating the query language with SQL restricts the system to a command line
dialogue. However, compared to the text model and the hypertext model it is no doubt a weakness
that the relational model provides part of the system only. The user interface to be build on top of
the relational DBMS must also implement any text related facilities as the relational model lacks
such facilities.

5

Representation
of documents

Data entry

Links

Query language

User interface

Performance

Update

Extensibility

Application range

Text model

+ reasonably natural

representation of
documents

- usually, only one
document format per
application

+ automatic indexing

and other data entry
tools

- lack of linking

facilities

+ syntactically simple

query language
+ specific text related

functions, such as
phrase handling and
proximity searching

- inflexible query
language

- rather predefined,

command or menu
based user interfaces

+ fast performance, even

on very large text
databases

- crude, slow update

facilities

- weak on extensibility

- limitation to a single

application area, thus
little like recovery
routines and such

Hypertext model

+ natural representation

of documents,
including graphics or
even hypermedia

+ tools to turn text with

special markup into
hypertext

+ flexible, powerful

linking facilities

- inadequate query

facilities

+ direct manipulation,

graphical user
interfaces

+ satisfactory

performance

- crude update facilities

+ straightforward

annotation facilities
- weak facilities for

larger extensions

- lack of many database

management facilities,
such as performance
measuring facilities

Relational model

- difficulties modelling

text with normalized
relations

- problems handling
long texts (a strongly
decreasing problem)

- no data entry tools for

text

+ versatile linking

facilities; links may
involve texts and
other objects

+ flexible, powerful

query language
- lack of text related

query facilities
- SQL unsuited as an

end-user query
language

- the user interface is

not part of the
relational model

- performance is a

bottleneck; large
space requirements

+ high-level update

functions, possibly
including integrity
constraints

+ extensibility without

affecting applications,
including openness
towards other
systems

+ designed to address a

broad range of
applications

Figure 2.2. Major strengths (+) and weaknesses (-) of the three data models.

6

3. Examples
Data models are abstractions and often more rigid than the systems implementing them. By
briefly describing three commercially available toolkits, the following examples supplement the
above discussion and illustrate certain combinations of facilities from different data models. The
examples are BRS/Search (version 6.0) based on the text model, Folio Views (version 2.1)
based on the hypertext model, and Oracle, including version 1.1 of the special purpose text
retrieval module, based on the relational model. The examples summarize a case study in which
the toolkits were used to develop three prototypes of a full-text legal information retrieval system
comprising 4 Mb of text from Karnov’s Lawbook, a leading body of laws in Denmark. The case
study was performed by this author and nine graduate students, see Andersen et al. (1992).
Figure 3.1 lists the differences between the major strengths and weaknesses discussed in the
literature and whose of the toolkits investigated.
 BRS/Search is a widespread and comprehensive toolkit for development of TSARS. It
has the strengths of the text model and avoids a number of the weaknesses. The Boolean query
facilities are available with several user interfaces, menu based as well as command based and
basic as well as comprehensive. Querying is supported by a thesaurus facility and supplemented
by the possibility of establishing links in or between documents. Furthermore, applications may
include documents in different formats. The weaknesses center around the extensibility and the
update facilities. Finally, it is apparent from the development of the prototype that the data entry
tools are inadequate for nontrivial applications.
 Folio Views builds upon the hypertext model in that the texts are divided into chunks,
called folios, and retrieval consists of creating and selecting groups of folios, called views. Views
can be created by following links and by posing queries. The query facility is based on an
inverted file which includes all words in the texts as well as the attributes assigned to the text
chunks. The query facility is central to Folio Views, actually links are implemented as static,
embedded queries. The toolkit has the strengths of the hypertext model and, in addition, a
reasonable query facility. However, the prototype shows that utilizing the possibilities of the
toolkit requires careful and heavy use of attributes, and this leads to a inflexible system as both
data entry and update facilities are rather crude.
 Oracle is a relational DBMS around which a number of special purpose tools have been
built. The toolkit used in the case study consisted of the relational DBMS, the text retrieval
module SQL*Textretrieval, and the user interface module SQL*Forms. The text retrieval
module extends the relational DBMS with facilities comparable to a simple text model system.
These facilities include an unsophisticated mapping of text onto relations, the addition of a text
related query sublanguage to SQL, a thesaurus facility, and a number of library functions to
support applications development. Furthermore, the toolkit supports form based user interfaces
well, and the prototype has satisfactory response times. The weaknesses include that: (1) text is
limited to 64 Kb chunks, and handling texts consisting of multiple chunks is the responsibility of
the applications developers; (2) the versatile facilities for modelling links are not supported by
facilities for link following in the user interface; and (3) the data entry tools are inadequate.

7

Representation
of documents

Data entry

Links

Query language

User interface

Performance

BRS

+ an application may

include several
document formats

- inadequate data entry

tools

+ reasonable linking

facility

+ a thesaurus facility

+ user interfaces for

different kinds of
users

+ the link facility has a
hypertext -like user
interface

Folio Views

+ strong facilities for

handling attributes
assigned to the texts

- inadequate data entry

tools

+ reasonable query

facilities

Oracle

- text limited to 64 Kb

chunks

- inadequate data entry

tools

+ SQL is extended with

a text related query
sublanguage

+ several text related
facilities, including
word indexes and
thesaurus

+ form based user

interfaces are well-
supported

- inadequate support
for link following in
the user interface

+ satisfactory

performance

Figure 3.1. Differences between the major strengths and weaknesses of the data
models, as discussed in the literature, and the toolkits, as found in the case study.

4. Discussion
The following discussion concerns the possibility of developing toolkits having the strengths of all
three data models. It begins by motivating such a unification and by emphasizing changeability as
a major property of a unified toolkit. Providing changeability is central to the relational model
while it has only had a minor impact on the design of the two other data models. Mainly for this
reason, it is the relational model which is considered for use as the nucleus of a unified TSARS
development environment.

4.1 A unified toolkit approach
The text model, the hypertext model, and the relational model have different origins—library
automation, human-computer interaction, and database theory, respectively. However, in recent
years their application areas have come to overlap significantly. Thus, while some application
areas are supported better by systems based on one of the data models, more and more
applications seem to require facilities from two or all three classes of toolkits. Electronic
publishing is one example: To provide online retrieval services, such a system requires some of

8

the text related query facilities of the text model and some of the browsing facilities of the
hypertext model; and to enable extraction of text for inclusion in various, possibly overlapping,
publications, the system also needs the data modelling and structured retrieval facilities of the
relational model.
 The advantages of using toolkits in software development rest on the assumption that the
toolkit fits the application. Thus, a situation where facilities from more than one toolkit seem to be
needed is a critical one. Furthermore, what appears to be needed when the choice of toolkit is
made will inevitably be subject to subsequent modifications. The importance of this aspect is
emphasized by it not being uncommon to see successful TSARS exist for 15-20 years. During
their lifetime these systems are subject to manifold changes, and their continued success is largely
due to the changes being incorporated into the original structure and idea of the system in a
smooth way, see Naur (1985). This places high demands on the changeability of the toolkits
used. The applications must, at the same time, be adaptable to manifold changes and manage to
preserve their basic structure during this evolution. Thus, the toolkits must provide a flexible, yet
stable, platform. Among other things, the stability should enable applications to benefit from
achievements incorporated into new versions of the toolkit without more or less rewriting the
systems. On the other hand, the flexibility should enable the systems to meet application-specific
demands for tailoring and evolution.
 Nishimoto & Ura (1989) note that in systems development response time and space
requirements are mostly favoured at the expense of changeability. Probably, this reflects both an
underestimation of the need for changeability and a pragmatic tendency to solve immediate
problems before addressing longer term problems. This emphasizes that to reach a proper
balance between performance and changeability both must be inherent in the toolkit—providing
good performance without changeability is common and results in inflexible systems, providing
changeability without good performance is research only.

4.2 Extending the relational model
The relational model focuses on one part of the application and is intended to be supplemented
with tools handling, among other things, the user interface. Thus, relational DBMS have the
openness required to form part of a TSARS development environment. Subject to meeting
certain challenges, discussed below, the relational model is found capable of incorporating both
the text model and the hypertext model:

• Incorporating the text model. As one of the examples in section 3 shows, the relational
model can be extended with an inverted file, Boolean retrieval, and other specific text
related facilities. In the example, Boolean retrieval is achieved by extending SQL with a
special text retrieval clause; alternatively, Macleod (1979) shows how it can be
implemented by adding a macro facility. Thus, provided the relational model is enhanced
slightly, it seems suited for text model systems.

• Incorporating the hypertext model. The file and data structures used to implement the
hypertext model are mostly special purpose ones, specific to the toolkit. However, larger
applications place higher demands on the file and data structures and, partly for this
reason, some hypertext toolkits are built on top of DBMS. Relational DBMS seem
suited for this purpose, as they have the facilities for modelling all sorts of links. These
links may refer to texts stored inside the database or in files external to it; thus, both
closed systems and link services are supported.

There seems to be three major challenges involved in extending the relational model into a viable
TSARS development environment incorporating the text model and the hypertext model: First,

9

the development of user interface tools for TSARS. Ready-made user interfaces should be
provided for common applications. These user interfaces should be templates which may be
used without modifications or refined to suit application-specific needs. As TSARS have a broad
range of application, see figure 2.1, there is also a need for tools from which to build user
interfaces, for example facilities creating relationships between the database and objects in the
user interface. The user interface tools should support the development of TSARS combining
facilities from the three data models. Currently, little guidance is available on how to combine for
instance browsing and querying, but the importance of the subject is widely acknowledged, see
for example Halasz (1988) and Marchionini & Shneiderman (1988).
 Second, the need to access the texts at different levels of detail at different times. Many
text model systems allow retrieval at two levels—document level and paragraph level, the
paragraphs being defined by tags inserted into the texts. To allow retrieval of individual
paragraphs, the relational model requires that the texts are divided into paragraphs, but then
entire documents are necessarily retrieved as sequences of paragraphs. The need to access texts
or other objects at several levels is the motivation for suggesting nested relations, see for example
Jaeschke & Schek (1982) and Roth et al. (1988). However, a much simpler solution would be
to allow concatenation of multiple paragraphs at retrieval time, much in line with for example the
sum aggregate function.
 Third, the performance costs of the high level of changeability. The response times of
relational DBMS appear to be acceptable at least for small and medium sized TSARS, i.e. text
databases less than 100 Mb of text. However, experimental evidence is scarce, especially
concerning large and very large text databases. Many resources are invested in improving
response times. Typically, these efforts focus on reducing the number of joins by abandoning the
first normal form or on improving the query optimizer, for example through preprocessing and
lazy evaluation, see for instance Graefe (1993) and Lynch (1991). A more narrowly focused
effort could be to tune the query optimizer especially for text retrieval.
 The space requirement is large; it is comparable to the 50-300% storage overhead seen
in connection with the text model (Faloutsos, 1985). This is, partly, due to the duplication of
keys needed to establish connections between the relations. Hertzum et al. (1993) report a
storage overhead of 400% using a relational DBMS, but also find that this is of minor importance
due to the rather low price of high volume storage media. Date (1986a) agrees that the space
requirement is large in most current relational DBMS, because the relations are mapped into
stored files. However, Date notes that due to the physical data independence a relational
database could use any storage structure. This means that, in principle, the space requirement
can be reduced to the same as any other system requires.

5. Conclusion
This study has reviewed the major strengths and weaknesses of three data models for the
development of TSARS—the text model, the hypertext model, and the relational model. All
three data models have unique, valuable properties, but more and more applications seem to
require facilities from more than one of the data models. This requirement is recognized in the
three commercially available toolkits described, and it is the motivation for the unified TSARS
development environment discussed.
 The unified toolkit is based on the relational model though this choice is contrary to most
of the literature. The relational model was chosen because of its emphasis on changeability and
without implying that the two other data models are unsuited. In general, the relational model
seems capable of providing a flexible, yet stable, platform incorporating the text model and the

10

hypertext model. Specifically, the study points to three areas where relational DBMS should be
improved to function as the basis of an efficient TSARS development environment: (1) Relational
DBMS should be supplemented with user interface tools specifically for TSARS. On this point,
much inspiration and experience can be gained from hypertext systems due to their emphasis on
human-computer interaction. (2) Relational DBMS should be extended to provide access to the
texts at several, application defined levels of detail. It seems possible to achieve this with simple
means at retrieval time. (3) Performance, especially response times, should be improved to
reduce the costs of the high level of changeability. However, though response times are
important, they must be balanced with the decrease in overall performance caused by lack of
changeability, for example prolonged system down time during maintenance and evolution.

Acknowledgments
I am grateful to Erik Frøkjær for stirring and spurring my interest in using the relational model as
the basis for TSARS and to Kaj Grønbæk and Jørgen Lindskov Knudsen for volunteering their
informed opinions on the status and directions of hypertext.

References
Andersen, K. H., Davidsen, P., Foldbjerg, M., Göttsche, P., Hertzum, M., Jensen, J., Jensen,

L. G., Lund, K., Rehn, M. & Rungø, P. (1992). Undersøgelse af værktøjer til opbygning
af tekstsøgesystemer. student report 92-4-12. DIKU, Copenhagen. In Danish.

Blair, D. C. (1988). An extended relational document retrieval model. Information Processing
& Management, 24(3), 349-371.

Borgman, C. L. (1986). Why are online catalogs hard to use? Lessons learned from information-
retrieval studies. Journal of the American Society for Information Science, 37(6), 387-
400.

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101-108.
Codd, E. F. (1970). A relational model of data for large shared data banks. Communications

of the ACM, 13(6), 377-387.
Codd, E. F. (1982). Relational database: a practical foundation for productivity.

Communications of the ACM, 25(2), 109-117.
Conklin, J. (1987). Hypertext: an introduction and survey. IEEE Computer, 20(9), 17-41.
Date, C. J. (1986a). Some relational myths exploded. In Relational Database: Selected

Writings. pp. 77-123. Addison-Wesley, Reading, Massachusetts.
Date, C. J. (1986b). A practical approach to database design. In Relational Database:

Selected Writings. pp. 417-470. Addison-Wesley, Reading, Massachusetts.
Engelbart, D. C. (1963). A conceptual framework for the augmentation of man’s intellect. In

Vistas in Information Handling. Vol. 1. pp. 1-29. Spartan Books, London.
Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1), 49-74.
Graefe, G. (1993). Query evaluation techniques for large databases. ACM Computing Surveys,

25(2), 73-170.
Halasz, F. (1988). Reflections on Notecards: seven issues for the next generation of hypermedia

systems. Communications of the ACM, 31(7), 836-852.

11

Halasz, F. & Schwartz, M. (1990). The Dexter hypertext reference model. In Proceedings of
the Hypertext Standardization Workshop. pp. 95-133. NIST Special Publication 500-
178. National Institute of Standards and Technology, Gaithersburg, Maryland.

Hertzum, M., Søes, H. & Frøkjær, E. (1993). Information retrieval systems for professionals: a
case study of computer supported legal research. European Journal of Information
Systems, 2(4), 296-303.

Jaeschke, G. & Schek, H.-J. (1982). Remarks on the algebra of non first normal form relations.
In Principles of database systems. Proceedings of the ACM SIGACT-SIGMOD
Symposium (Los Angeles, California). pp. 124-138.

Lynch, C. A. (1991). Nonmaterialized relations and the support of information retrieval
applications by relational database systems. Journal of the American Society for
Information Science, 42(6), 389-396.

Lynch, C. A. & Stonebraker, M. (1988). Extended user-defined indexing with application to
textual databases. In Proceedings of the fourteenth international conference on very
large databases, VLDB. pp. 306-317. Morgan Kaufman, Palo Alto, California.

Macleod, I. A. (1979). SEQUEL as a language for document retrieval. Journal of the
American Society for Information Science, 30, 243-249.

Macleod, I. A. (1991). Text retrieval and the relational model. Journal of the American
Society for Information Science, 42(3), 155-165.

Marchionini, G. & Shneiderman, B. (1988). Finding facts vs. browsing knowledge in hypertext
systems. IEEE Computer, 21(1), 70-80.

Morissey, J. M., Harper, D. J. & van Rijsbergen, C. J. (1986). Interactive querying techniques
for an office filing facility. Information Processing & Management, 22(2), 121-134.

Naur, P. (1985). Programming as theory building. Microprocessing and Microprogramming,
15(5), 253-261.

Nelson, T. H. (1967). Getting it out of our system. In Information Retrieval: A Critical
Review. Thompson Books, Washington, D. C.

Nishimoto, H. & Ura, S. (1989). Complex view support for a library database system.
Information Processing & Management, 25(5), 515-525.

Parsaye, K., Chignell, M., Khoshafian, S. & Wong, H. (1989). Intelligent databases. Object-
oriented, deductive hypermedia technologies. Wiley & Sons, New York.

Puttress, J. J. & Guimaraes, N. M. (1990). The toolkit approach to hypermedia. In Hypertext:
concepts, systems and applications. Proceedings of the First European Conference on
Hypertext. pp. 25-37. Cambridge University Press, Cambridge.

Roth, M. A., Korth, H. F. & Silberschatz, A. (1988). Extended algebra and calculus for nested
relational databases. ACM Transactions on Database Systems, 13(4), 389-417.

Salton, G. & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-
Hill, New York.

van Rijsbergen, C. J. (1979). Information Retrieval. Second edition. Butterworths, London.

